Aplikasi Artificial Neural Network (ANN) dalam Peramalan Time Series Data: Studi Kasus Lama Sinar Matahari

Syaharuddin Syaharuddin, Novi Haerunnisa, Dewi Pramita, Malik Ibrahim

Abstract


This research was conducted to study the Back Propagation ANN that was implemented with the Matlab GUI. Where the data used is the duration of shine data, the network architecture is formed by determining the number of units per layer. After the network is formed, training and testing are carried out from the data that has been grouped before. Furthermore, the prediction stage uses the trainer's training method with the log sig activation function of each layer. The number of input layer neurons is 120, the first hidden layer is 10, the second hidden layer is 10, the output layer is 1. While the maximum epoch parameter is 1000, the goal is 0.001, the learning rate is 0.7 and the step is 1. Based on the simulation results January was 51.25%, February was 62.00%, March was 59.29%, April was 64.52%, May was 71.42%, June was 79.32%, July was 64.25%, August was 77.87%, September was 85.02%, October was 81.33%, November of 56.67%, and December of 39.14%. The simulation results were obtained with MSE accuracy of 5.114, MAD of 1.479, MAPE of 2.162, RMSE of 2.261, and accuracy of 97.43%.

Keywords


Artificial Neural Network; Forecasting; Duration of Shine

Full Text:

PDF

References


Andrian, Y., & Ningsih, E. (2014). Prediksi Curah Hujan Di Kota Medan Menggunakan Metode Backpropagation Neural Network. Seminar Nasional Informatika, 184–189.

Aswad A, M. H. (2018). Analisis Peramalan Jumlah Penduduk Kota Palopo Tahun 2013 – 2017. Al-Khwarizmi: Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 1(1), 49–58. https://doi.org/10.24256/jpmipa.v1i1.83

Firdaus. (2015). Jaringan Syaraf Tiruan untuk Memprediksi Prestasi Siswa menggunakan Algoritma Backpropagation. SATIN, 2(1), 22–30.

Irawan, M. I., Syaharuddin, Utomo, D. B., & Rukmi, A. M. (2013). Intelligent irrigation water requirement system based on artificial neural networks and profit optimization for planting time decision making of crops in Lombok Island. Journal of Theoretical and Applied Information Technology, 58(3), 657–671.

Kumila, A., Sholihah, B., Evizia, E., Safitri, N., & Fitri, S. (2019). Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan. JTAM (Jurnal Teori Dan Aplikasi Matematika), 3(1), 65. https://doi.org/10.31764/jtam.v3i1.764

Lubis, L. S., & Buono, A. (2012). Pemodelan Jaringan Syaraf Tiruan untuk Memprediksi Awal Musim Hujan Berdasarkan Suhu Permukaan Laut. Jurnal Ilmu Komputer Dan Agri-Informatika, 1(2), 52. https://doi.org/10.29244/jika.1.2.52-61

Muhajirah, A., Safitri, E., Mardiana, T., Hartina, H., & Setiawan, A. (2019). Analisis Tingkat Akurasi Metode Neuro Fuzzy dalam Prediksi Data IPM di NTB. JTAM (Jurnal Teori Dan Aplikasi Matematika), 3(1), 58. https://doi.org/10.31764/jtam.v3i1.769

Rahmasari, A., Sunani, E. H., Jannah, M., Fathulaili, F., Kurnia, L., & Satria, A. (2019). ARDL Method: Forecasting Data Kemiskinan di NTB. JTAM (Jurnal Teori Dan Aplikasi Matematika), 3(1), 52. https://doi.org/10.31764/jtam.v3i1.767

Solikhun, & Safii, M. (2017). Jaringan Saraf Tiruan Untuk Memprediksi. Jurnal Sains Komputer & Informatika (J-SAKTI), 1(1), 24–36.

Sucipto, L., & Syaharuddin, S. (2018). Konstruksi Forecasting System Multi-Model untuk pemodelan matematika pada peramalan Indeks Pembangunan Manusia Provinsi Nusa Tenggara Barat. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 4(2), 114. https://doi.org/10.26594/register.v4i2.1263

Sudarsono, A. (2016). Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Backpropagation (Studi Kasus di Kota Bengkulu). Media Infotama, 12(1), 61–69.

Suhaidi, S., Febriana, E., RPN, Habib., & Ardiansyah, I. (2017). ANN Back Propagation for Forecasting and Simulation Hydroclimatology Data. Prosiding Seminar Nasional Pendidik Dan Pengembang Pendidikan Indonesia Dengan Tema “Membangun Generasi Berkarakter Melalui Pembelajaran Inovatif,” 6(10), 553–559.

Syukur, A., Supriyanto, C., & Zyen, A. K. (2016). Prediksi Kecepatan Angin Menggunakan Model Artificial Neural Network Berbasis Adaboost. Jurnal Teknologi Informasi, 12(April), 31–41.

Vinsensius, R. R. (2014). Analisis Perbandingan Metode Backpropagation Dan Radial Basis Function Untuk Memprediksi Curah Hujan Dengan Jaringan Syaraf Tiruan. Skripsi, Fakultas Ilmu Komputer.


Refbacks

  • There are currently no refbacks.